

Georg-August-Universität Göttingen Faculty of Economic Sciences Development Economics Research Group

Benefits Trickling Away: The Health Impact of extending access to piped Water and Sanitation in urban Yemen

(published in Journal of Development Effectiveness) with some further analyses Stephan Klasen, Tobias Lechtenfeld Kristina Meier & Johannes Rieckmann

Manchester Impact Evaluation Workshop

Funding from the German Ministry of Economic Cooperation and Development via KfW Development Bank is gratefully acknowledged.

What do we know about ...

...Drinking water ?

- 1.1 billion people without safe drinking water
 Water pollution causes nearly 90% of all diarrheal diseases
 WHO 2004
 ...Diarrhea?
 causes 20% of child mortality in developing countries (<5 yrs)
 Kosek et al 2003
 causes 8% of total lost life years in dev. countries
 Smith et al 1999
- also affects health outcomes, education, (future) income Zwane & Kremer 2007

...Impact of Piped Water on Child Diarrhea?

- World Bank IEG (2010): Evaluation of World Bank water projects (worth >\$3 billion)
- "Evidence of <u>improved water quality</u> is rare, as are indications of the <u>improved health</u> of project beneficiaries."

Study Setting: Urban Yemen

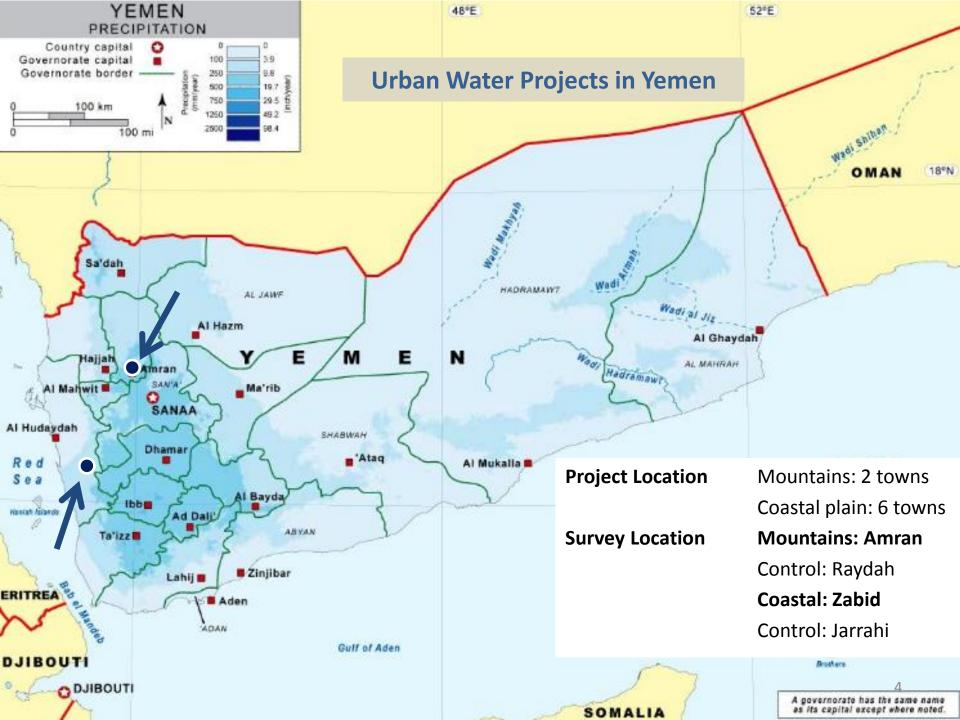
Key Message

Conditions in Yemen are similar to many other countries in the Middle East and (North) Africa

Water Stress

- over-use of ground-water
- sizable country: 24 million
- urban population growth very high: 4.7%

Low Human Capital


- low adult literacy rate: 40% women (77 % men)
- health knowledge is even more limited
- HDI: 150 (out of 177)

Weak Government

- governance structures are weak;
- frequent social conflicts on land & water rights

MENA Region

Main Evaluation Results

Intervention

Piped water and sanitation in provincial towns in Yemen Mountain: water and sanitation access Coastal: Additional sanitation access

Evaluation

Mix of quasi-experimental methods to quantify health impact using in-town and out-of-town control groups:

- Matching
- Instrumental Variable Regression
- Diff-in-Diff
- Panel Analysis from health facilities

Results

- 1. Access to piped water *increases* diarrhea among children and adults
- 2. Negative health impact linked to interruptions of piped water supply
- 3. Limited impact of piped sanitation; requires running water to function well

Treatment & Instruments

Treatment

- Project includes new wells, treatment plants and piped network
- Effectively replaces water bought from trucks by piped water
- Continued storage of water at household level (tanks and containers)

Selection Effects

- House connections were installed without choice
- Construction always started in the city center / Old City
- Manual labor used: streets with hard rocky ground were avoided

Instruments

- 1. Distance from City Center
- 2. Rocky Ground
- 3. Age of House

Water Source in Control Areas

- Truck water from agricultural wells
- Truck water is available in project towns

Data

Survey Data

- 2500 households in 4 provincial towns
- 2 types of control groups: project town and control towns
- Covers: health, water handling and storage, education, socio-economic charact.

Secondary Data

- Baseline data for 1 town (no panel), useful for diff-in-diff
- Coliform tests data on pollution in wells, pipes and households
- Health facility data on diarrheal diseases
- GPS data of household location (neighborhoods and streets)

Descriptives

3. Descriptive Statistics Main Source of Drinking Water

			Drinking Water	Sources
		Source	Percent	N
Mountain	Water	Pipe	74.6	449
		Tanker	20.2	124
		Other	5.2	36*
		Total	100.0	609
	Not Connected	Tanker	91.7	386
		Other	8.3	40*
		Total	100.0	426
	Control Town	Tanker	95.7	261
		Other	4.3	12*
		Total	100.0	273
Coastal	Water	Pipe	99.2	849
		Other		11*
		Total	100.0	860
	Control Town	Tanker	40.9	150
		Other	59.1	245
		Total	100.0	395
Total				2563

In Amran the main source of drinking water is still the tanker truck for every fifth connected household

Descriptive Statistics Problems with piped and tanker water

			Unreliable Supply	Poor Quality	Too expensive	No Problems	Sources
		Source	Percent	Percent	Percent	Percent	N
Mountain	Water	Pipe	26.0	9.3	21.3	43.4	389
		Tanker	16.0	8.0	29.6	46.5	213
	None	Tanker	3.1	8.8	40.1	48.0	354
	Control Town	Tanker	3.2	5.5	43.9	47.4	253
Coastal	Water	Pipe	8.7	2.5	29.3	59.5	827
		Tanker	0.0	0.0	33.3	66.7	6
	Control Town	Tanker	8.7	9.4	35.6	46.3	149
Sample			10.9	6.1	31.8	51.3	2191

Note: Households use multiple drinking water sources

Lack of reliability of pipe water supply is perceived to be the most important problem in Amran Water supply and sanitation in Zabid is perceived to as reliable and of good quality (but as ,expensive')

Diarrheal diseases among children and adults

(past 30 days)

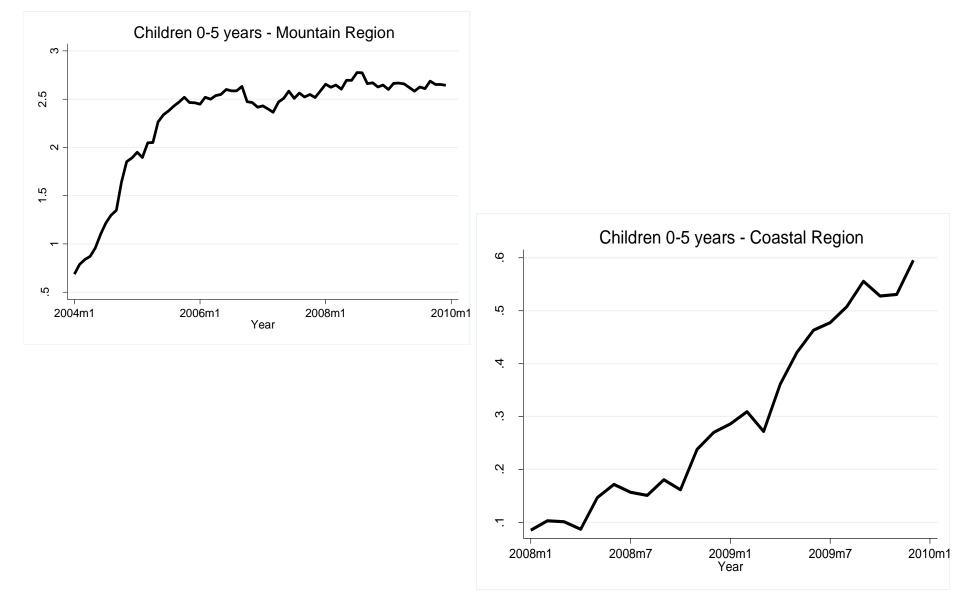
Main Results

- Children are widely affected by diarrheal diseases
- Incidence much higher in treatment group

Lee	diaatan	Diarrhea		Waterborn	ne Diseases	Disease	e Severity	Severity Days missed		HH
In	dicator	Child	All Ages	Child	All Ages	Child	All Ages	School	Work	N
Mountai	n									
Water		13.8	5.3	30.2	9.9	34.8	7.6	0.3	0.9	201
Water	Sanitation	15.9	5.8	46.8	11.2	44.3	8	1.4	6.4	270
Control	Area	9.8	3.4	25.8	8.2	27.6	6.1	0.2	1.8	374
Control	Town	4.9	3.3	20.5	6	21.8	5	0.1	2.3	298
Coastal										
Water		11.8	5.1	37.1	11.2	37.6	6.6	5.4	1.3	127
Water	Sanitation	10.6	3.5	26.1	7.2	29.1	4.7	1.4	1.6	714
Control	Town	8.2	3.3	21.9	6.4	17.9	4.3	1.2	1.8	434
Total		10.2	3.9	28	7.9	28.7	5.6	1.2	2.2	2418

Note: Symptoms of water borne diseases include diarrhoea, dysentery, vomiting, abdominal pain, and fever

Double Difference Results for Water and Sanitation


Main Results

- Piped Water leads to increased diarrhea when water rationing is frequent
- Sanitation seems to further increase diarrhea incidence

	Diarrhoea	Baseline	Endline
Outcome	pct points	Individuals	Individuals
	First Difference: change	over time	
Water	3.44*	1744	1832
Sanitation	4.35*	1744	2256
Control	2.07	1118	2922
	Double Difference: treat	ment – control	
Water	1.37**	Impact of Water	
Sanitation	2.27**		
	Treatment Difference: sa	initation – water	
Sanitation	0.91*	Impact of Sanitation	
Results only for pro	iect town with frequent water r	ationing	

Results only for project town with frequent water rationing Improved sanitation is conditional on access to piped water Differences between point estimates

Figure 2: Differences in Diarrhoea Incidence between Treatment and Control Towns (Health Facility Data)

Econometric Results on Health Impact

Health Impact of Water:

Propensity Score Matching

Main Results

- Increased disease burden in mountains, where water rationing is frequent
- Child Diarrhea (Incidence + severity)
- Water borne diseases (adults + children)

		Coastal R	egion	Mountain Region				
Outcome		out-of-town	control	out-of-town	control	in-town co	ontrol	
		ATT	N	ATT	N	ATT	N	
Diamhaaa	Child	0.0151	338	0.0954***	361	0.0412	409	
Diarrhoea	All Ages	0.0111	560	0.0193	488	0.0195^*	567	
Waterborne	Child	0.1328	338	0.1078^{*}	361	0.0631	409	
Diseases	All Ages	0.0399**	560	0.0455***	488	0.0268^{*}	567	
Cit	Child	0.1879	338	0.1347*	361	0.1041	409	
Severity	All Ages	0.0184	560	0.0329**	488	0.0239^{*}	567	
Days	School	0.0441*	560	0.0018	496	0.0018	573	
missed	Work	-0.0074	560	-0.0076	496	-0.003	573	

Note: Radius matching, calliper=0.05

Treatment & Instruments

IV First Stage Regression

.	(1)	(2)	(3)	(4)	(5)				
Instruments	Access to Piped Water								
Distance to center, 100m	-0.0273***			-0.0269***	-0.0258***				
	(0.003)			(0.003)	(0.003)				
Rocky ground		-0.1652***		-0.1013***	-0.1014***				
		(0.035)		(0.037)	(0.038)				
Age of house, 100yrs			0.1434***		0.0913***				
			(0.019)		(0.017)				
Observations	2,372	2,438	2,438	2,372	2,372				
Model FTest	109.035	22.342	54.850	65.309	70.610				
Model pval	0.000	0.000	0.000	0.000	0.000				
adj R2	0.149	0.008	0.023	0.152	0.161				

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Health Impact of Water: Instrumental Variables

Main Results

- Increase in child diarrhea
- Increase in other water related symptoms for all age groups
- Increase in illness severity

			Mountain Region					
Outcome		Immediat	F-test	F-test Hansen				
		Impact	Stage 1	p-value	Ν			
Diarrhoea	Child	0.155***	57.76	0.645	784			
Diarmoea	All Ages	0.035	78.71	0.38	1072			
Waterborne	Child	0.213*	57.76	0.795	784			
Diseases	All Ages	0.0723**	78.71	0.561	1072			
D' 0 ''	Child	0.307**	57.76	0.557	784			
Disease Severity	All Ages	0.0669**	78.71	0.294	1072			

Results only for project town with frequent water rationing Instruments: Distance from center, rocky ground, age of house, control town

Health Impact of Sanitation: Propensity Score Matching

Main Result

- Few health improvements: only when no water rationing occurs
- Increase in water related symptoms among children: if rationing occurs

Outcome		Coastal I	Region	Mountain Region		
		In-town o	control	In-town co	ntrol	
		ATT	N	ATT	Ν	
Diamhaaa	Child	-0.0223	418	0.015	327	
Diarrhoea	All Ages	-0.0207	841	0.0087	458	
Waterborne	Child	-0.1172	418	0.1382*	327	
Diseases	All Ages	-0.0373*	841	0.0187	458	
Disease Severity	Child	-0.0899	418	0.0684	327	
	All Ages	-0.0244	841	0.0077	458	

Radius matching, calliper=0.05

Improved sanitation is conditional on access to piped water

Health Impact of Sanitation: Instrumental Variables

Main Results

• No significant health improvements for children or adults

			Mountains				Coastal			
Outcome			F-test	Hansen			F-test	Hansen		
		Impact	First Stage	p-value	Ν	Impact	First Stage	p-value	Ν	
Diarrhoea	Child	0.001	34.38	0.632	311	-0.187	4.938	0.496	411	
Diamoea	All Ages	0.011	46.91	0.335	436	-0.071	3.16	0.42	826	
Waterborne	Child	0.103	34.38	0.907	311	-0.552	4.938	0.703	411	
Diseases	All Ages	0.008	46.91	0.887	436	-0.152	3.16	0.33	826	
Disease	Child	0.024	46.91	0.518	436	-0.079	3.16	0.792	826	
Severity	All Ages	0.158	34.38	0.667	311	-0.626	4.938	0.793	411	

Instruments: Distance from center, rocky ground, age of house, control town Improved sanitation is conditional on access to piped water

Robustness

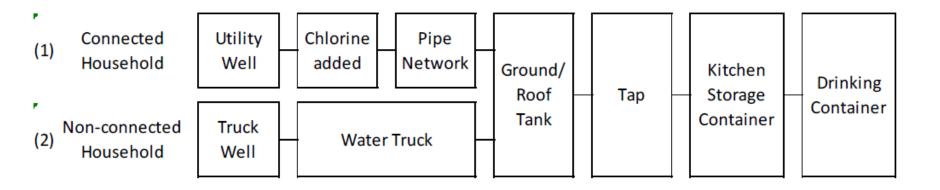
Matching

Same results with more extreme techniques

- Kernel Matching (improved common support)
- Nearest-Neighbor Matching (reduced common support)

Instrumental Variables

Same results with different instrument set (but weaker first stage)


- without binary control town indicator (potential violation of exclusion restriction)
- without age of house (potentially endogenous)

Measurement

Same results with

- diseases at individual level
- exclusion of richest quintile

Transmission Mechanism 1: Technical design

		E.coli	HH
		%	Ν
Mountain			
Water	Dimenselle	20.0	70.0
Sanitation	Pipewells	38.4	73.0
None	Truckwells	20.3	64.0
Control	Truckwells	40.0	65.0
Coastal			
Water	Dinomalla	46.4	69.0
Water & Sanit.	Pipewells	36.6	71.0
Control	Truckwells	61.4	88.0
Total		38.6	500.0

Ducantan	(1)	(2)	(3)	(4)	(5)	(6)
Dysentery	Illn	ess	Seve	erity	Dura	ation
Total Coliform	0.0020**	0.0029**	0.0014*	0.0020*	0.0070**	0.0098**
at Drinking Cup	(0.001)	(0.001)	(0.001)	(0.001)	(0.003)	(0.004)
Observations	499	499	499	499	499	499
Controls	NO	YES	NO	YES	NO	YES

Table 1. Pollution at Point-of-use and Diarrhea (Dysentery)

Robust standard errors in parentheses

Significance levels *** p<0.01, ** p<0.05, * p<0.1

Controls include age, gender, education, hygiene behavior, improved water and sanitation, location fixed effects

Source: Lechtenfeld (2012).

Total Coliform	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Low Pollution Fhreshold	OLS	Probit	IV	BL	BP	BP	BP	BP
Piped Water	0.0228	0.0202	0.2009	0.0586	0.0111	0.0118	0.0198	0.0328
	(0.050)	(0.046)	(0.131)	(0.137)	(0.030)	(0.030)	(0.041)	(0.052)
Roof Tank	-0.0948	-0.0953	-0.0760	-0.0910		-0.1910***	-0.1947***	-0.1544***
n 1.0:	(0.064)	(0.064)	(0.069)	(0.066)		(0.066)	(0.064)	(0.058)
Tank Size 100L)	0.0009	0.0007	0.0011	0.0009		0.0002	-0.0007	-0.0003
	(0.001)	(0.001)	(0.001)	(0.001)		(0.001)	(0.001)	(0.001)
Water Rationing	-0.0505	-0.0336	-0.1427	-0.0690			1.4169***	0.8881***
-	(0.075)	(0.053)	(0.100)	(0.102)			(0.108)	(0.079)
Household	0.0327*	0.0360*	0.0417**	0.0345*				-0.0154
Size Neighborhood	(0.019)	(0.022)	(0.020)	(0.020)				(0.024)
nean) Housing Index	0.3903	0.4585	0.4750	0.4073				-0.3143
Neighborhood	(0.308)	(0.335)	(0.313)	(0.314)				(0.316)
Mean)	. ,		. ,	. ,				
Mother Education	-0.1756	-0.2342*	-0.3889**	-0.2185				0.4547***
Neighborhood Mean)	(0.128)	(0.126)	(0.190)	(0.205)				(0.142)
ncome per	-0.0662	-0.0736	-0.1032*	-0.0736				0.0955**
capita Neighborhood Mean)	(0.050)	(0.052)	(0.055)	(0.053)				(0.044)
Mountain Region	-0.2561***	-0.2597***	-0.3134***	-0.2676***	0.2654***	0.4058***	0.3609***	0.2818***
	(0.074)	(0.073)	(0.086)	(0.084)	(0.036)	(0.067)	(0.071)	(0.069)
Observations	446	446	446	446	481	464	446	446
Model F-Test	5.680		6.376					
Model Chi2		39.38		53.23	4158.8	1297.4	2393.0	5288.3
Model p-value	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Probit rho				0.098	2.546	2.715	2.201	0.283
chi2 Probit rho p-								
value				0.952	0.111	0.099	0.138	0.595
ATE water	0.023	0.020	0.201	0.040	0.020	0.022	0.036	0.061
ATT water	0.023	0.024	0.201	0.033	0.021	0.025	0.041	0.070

Table 3. Water pipe pollution: Total Coliform, low threshold

Robust standard errors in parentheses; Significance *** p<0.01, ** p<0.05, * p<0.1

Probit, BL and BP in average marginal effects

Source: Lechtenfeld (2012)

Hypothesis 1: The source well is polluted

			Source We	Sample Size	
		Water	E.coli	TDS	Wells
		Source	percent	percent	N
Mountain	Water	Dinowalla		20.0	5
	Water & Sanit	Pipewells	0.0	20.0	5
	None	Truckwells	0.0	66.7	3
	ControlTown	Truckwells	0.0	0.0	3
Coast	Water	Dinewalle		100.0	·
	Water & Sanit	Pipewells	0.0	100.0	3
	ControlTown	Truckwells	85.7	57.1	7
Total			28.6	47.6	21

Ecoli Clean

TDS Some signs of pollution

Hypothesis 2: The main feed pipes are polluted

		Water pipe polluted		Sample Size
	E.coli	Total Coliform	TDS	Pipes
	percent	percent	percent	N
Mountain	0.00	0.00	0.00	4
Coastal	50.00	100.00	100.00	2
Total	16.66	33.32	0.00	6

- Ecoli Pollution in Zabid
- Total Coli Pollution in Zabid
- TDS Pollution in Zabid

Hypothesis: Water tanks are a source of pollution

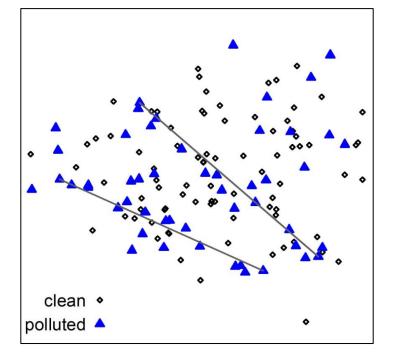
- **a.** Existence of a Tank: point-of-use water not cleaner without tank
- Tanks are not a general problem
- **b.** Location of a tank: roof vs. ground tanks make no difference
- tank pollution seems to have external source
- c. Storage time in tanks: no difference in tank pollution by time
- Tanks are not the source of pollution

But why are tanks polluted?

- **Rationing of piped water:** can cause storage tank pollution by pipe flushing
- Epidemiological literature suggests pollution through pipe flushing
- Caveat: Not enough variance in water-rationing data to analyze

Hypothesis 6:Rationing of piped water causes storage tankpollution by mixing

	Storage Tank Polluted						
	Water	E.coli	Total Coliform	TDS	Households		
	Source	percent	percent	percent	N		
Mountain	Pipe	15.8	61.1	2.1	95		
	Mixed	34.9	65.1	18.6	43		
Coast	Pipe	36.7	88.5	98.6	139		
	Mixed	na	na	na	0		
Total	•	29.2	75.5	53.1	277		


Analysis possible for Amran (very few tanks in Zabid):

- Ecoli Significant increase
- Total Coli
 No significant differences
- TDS Significant increase

Hypothesis 8:Leaks in the small feed pipes cause pollutionof the drinking water

Spatial analysis: E.coli pollution in water tanks Shows some spatial correlation Indication for pollution from piped network

Zabid (coastal):

Changes in Pollution Provalence

Hypothesis 9: Household members cause the water pollution at the point-of-use

	Changes in Pollution Prevalence							
		E.coli	Total Coliform	TDS	HH			
		percentage points	percentage points	percentage points	Ν			
Mountain	Water	23.3	17.2	0.9	116			
	No Connection	16.0	10.0	0.0	50			
	Control Town	22.0	36.0	0.0	50			
Coast	Water	25.6	7.7	-20.5	117			
	Control Town	31.0	4.2	-35.2	71			
Total	·	24.1	13.5	-11.8	407			

Change of pollution between tank and point-of-use:

- EcoliSignificant increase
- Total Coli Significant increase
- TDS No change

Table III.3: Probabi	lity of drinking wate	er treatment	, connection	s compared,	selected spec	ifications
Specification	(1)	(2)	(3)	(4)	(5)	(6)
Estimator	Probit	Probit	Probit	Probit	Probit	Probit
	0.054***	0.033**	0.060***	0.040***	0.061***	0.041***
Piped Water	(0.012)	(0.015)	(0.013)	(0.015)	(0.014)	(0.015)
Saurana		0.036**		0.042***		0.042***
Sewerage		(0.015)		(0.015)		(0.015)
HH Member trained	0.102***	0.096***	0.105***	0.099***	0.106***	0.100***
nn Member trained	(0.020)	(0.020)	(0.021)	(0.021)	(0.021)	(0.021)
Web Access	0.069**	0.066**	0.073**	0.068**	0.073**	0.068**
Web Access	(0.033)	(0.033)	(0.033)	(0.034)	(0.033)	(0.033)
Primary Edu	0.044***	0.044***	0.043***	0.044***		
Primary Edu	(0.014)	(0.014)	(0.014)	(0.014)		
Intermediate Edu	0.010	0.008	0.010	0.009		
Internetiate Edu	(0.023)	(0.022)	(0.022)	(0.022)		
Secondary Edu	0.045**	0.044**	0.050***	0.049***		
Secondary Edd	(0.018)	(0.018)	(0.018)	(0.018)		
Tertiary Edu	0.043**	0.042**	0.047**	0.047**		
Tertiary Edu	(0.021)	(0.020)	(0.021)	(0.021)		
Edu. Durat [°] HH Head					0.003***	0.003***
Edu. Durat mineau					(0.001)	(0.001)
Age HH Head	-0.000	-0.000	-0.000	-0.000	0.000	0.000
Age Intricate	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Gender HH Head	-0.044*	-0.042*	-0.047*	-0.045*	-0.042*	-0.040*
Gender minieau	(0.024)	(0.024)	(0.024)	(0.024)	(0.024)	(0.024)
Marital Status HH Head	0.012	0.010	0.011	0.009	0.017	0.015
Marital Status III field	(0.021)	(0.021)	(0.020)	(0.021)	(0.021)	(0.021)
Disease Awareness	0.006	0.006	0.006	0.006	0.004	0.004
	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)
Asset Index	0.039***	0.038***	0.037***	0.036***	0.038***	0.038***
	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)
Dependency Ratio	-0.000	0.004	-0.006	-0.002	-0.010	-0.006
	(0.027)	(0.028)	(0.027)	(0.027)	(0.027)	(0.027)
Water Tank present	-0.021	-0.020	-0.026	-0.026	-0.027	-0.027
	(0.019)	(0.019)	(0.018)	(0.018)	(0.018)	(0.018)
Region	0.154***	0.161***				
	(0.016)	(0.017)				
Mountain Treatment			0.035**	0.027	0.036**	0.027
			(0.016)	(0.017)	(0.016)	(0.017)
Coastal Treatment		(2014)	-0.149***	-0.168***	-0.152***	-0.172***
	Source: Rieckmai	nn (2014).	(0.024)	(0.025)	(0.024)	(0.025)
Coastal Control			-0.071***	-0.074***	-0.074***	-0.077***
		-	(0.024)	(0.024)	(0.024)	(0.024)
Sample Size	2459	2459	2459	2459	2459	2459
Pseudo R ²	0.175	0.179	0.186	0.191	0.181	0.186

Total Coliform	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Low Pollution Threshold	OLS	OLS	OLS	OLS	OLS	OLS	OLS
	\frown						
Improved water storage	-0.0610**				-0.0583*	-0.0582*	-0.0683**
	(0.031)				(0.031)	(0.031)	(0.031)
Water boiling		-0.1156			-0.1050	-0.1049	-0.1261
		(0.112)			(0.109)	(0.109)	(0.117)
Soap use			0.0084			0.0069	0.0091
			(0.042)			(0.041)	(0.045)
Health Knowledge				0.0114			-0.0010
				(0.038)			(0.041)
Dependency Ratio	0.0292	0.0265	0.0260	0.0212	0.0304	0.0313	0.0286
	(0.062)	(0.062)	(0.062)	(0.063)	(0.062)	(0.062)	(0.063)
Income per capita	0.0023	0.0031	0.0022	0.0014	0.0031	0.0031	0.0025
	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)
House rented	-0.0099	-0.0151	-0.0141	0.0066	-0.0109	-0.0108	0.0113
	(0.044)	(0.044)	(0.044)	(0.043)	(0.044)	(0.044)	(0.042)
Household Size	0.0041	0.0050	0.0055	0.0015	0.0038	0.0039	-0.0006
(Neighborhood mean)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)
Housing Index	-0.0249	-0.0498	-0.0358	-0.0526	-0.0364	-0.0349	-0.0468
(Neighborhood Mean)	(0.236)	(0.235)	(0.238)	(0.235)	(0.236)	(0.240)	(0.240)
Mother Education	0.1977 **	0.2259^{**}	0.2147^{**}	0.1905^{**}	0.2082^{**}	0.2077 **	0.1840*
(Neighborhood Mean)	(0.096)	(0.095)	(0.097)	(0.097)	(0.095)	(0.096)	(0.096)
Mountain Region	-0.0674	-0.0379	-0.0442	-0.0356	-0.0610	-0.0613	-0.0552
	(0.058)	(0.055)	(0.056)	(0.057)	(0.057)	(0.057)	(0.058)
Control town mountains	0.1335^{***}	0.1247^{***}	0.1302***	0.1160***	0.1294^{***}	0.1303***	0.1185^{***}
	(0.042)	(0.042)	(0.043)	(0.042)	(0.042)	(0.044)	(0.044)
Control town coast	0.0441	0.0522	0.0513	0.0465	0.0456	0.0458	0.0418
	(0.043)	(0.043)	(0.042)	(0.043)	(0.043)	(0.043)	(0.043)
Tank Pollution	-0.866***	-0.868***	-0.868***	-0.880***	-0.865***	-0.864***	-0.875***
	(0.046)	(0.046)	(0.046)	(0.047)	(0.046)	(0.046)	(0.047)
Constant	0.708***	0.641***	0.634***	0.692***	0.704***	0.696***	0.760***
	(0.140)	(0.137)	(0.137)	(0.138)	(0.140)	(0.140)	(0.141)
Observations	480	480	480	472	480	480	472
adj R2	0.550	0.549	0.547	0.556	0.550	0.550	0.560
Model F-Test	40.883	41.336	40.762	44.086	37.872	34.857	35.208
Model p-value	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Debugt stor dand smore in							

Table 5: Intra-household water pollution: changes in total coliform, low threshold

Robust standard errors in parentheses Significance *** p<0.01, ** p<0.05, * p<0.1

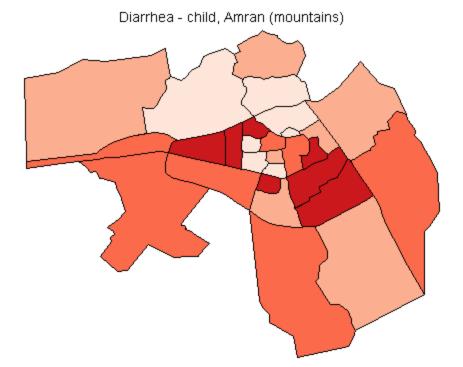
Source: Lechtenfeld (2012)

Conclusions

Conclusions

Key Results

- No positive health impact of piped water and sanitation
- Impact worst in areas with frequent water rationing, which causes pollution in pipes
- Extended rationing forces households to use unimproved water sources
- Widespread water pollution at point-of-use
- No signs of water purification at point of use


Policy Implication

- Investment in piped water supply should not be made when reliable water supply cannot be guaranteed
- Instead, alternatives should be tested to get better health outcomes at lower cost:
 - 1. engage with existing truck water vendors
 - 2. public standpipes with chlorinated water
 - 3. point-of-use water treatment
 - 4. hygiene education

Additional Details

Spatial Distribution of Water Pollution

Waterborne diseases also vary across space:

Household Survey

		HHs	Population
Mountains	Water	201	1777
	Water & Sanitation	270	2257
	None	374	2977
	Control Town	298	2508
Coast	Water	127	859
	Water & Sanitation	714	4746
	Control Town	434	3101
Total		2418	18225

Identification

1. Matching

Only compares similar HHs between treatment and control groups, where similarity is defined by the predicted propensity of receiving treatment

Pro: Works with ex-post data

No functional form assumptions

Con: Biased if treatment selection driven by unobservables (conditional independence assumption)

Biased if used covariates are affected by treatment

Sensitive to specification of treatment model

2. Instrumental Variables Analysis

Measure the impact of predicted treatment by an instrument

Pro: Works with ex-post data

Avoids problem of unobserved treatment selection

Con: Biased if instrument directly affects outcome (exclusion restriction)

Biased if instrument only weakly predicts treatment

3. Double Differencing

Differencing between treatment and control group and over time

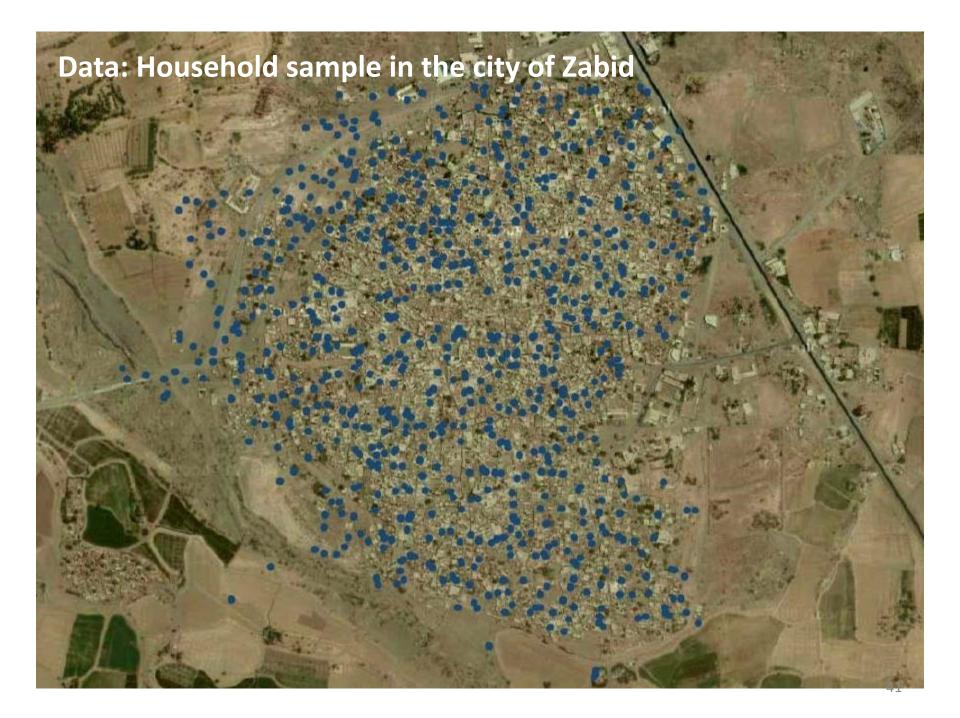
Pro: Removes systematic bias from ex-ante differences between treatment and control group

Con: Biased if time-variant differences exist (e.g. other interventions)

Biased if unobserved treatment selection


Identification

Controls:


Education Level Parents, Disease knowledge, Soap, Purification, Bad water quality, Sewerage clogging, Dependency ratio, House ownership, Wealth (Asset Index), Truck Water Use

Spatial Distribution of Water Pollution

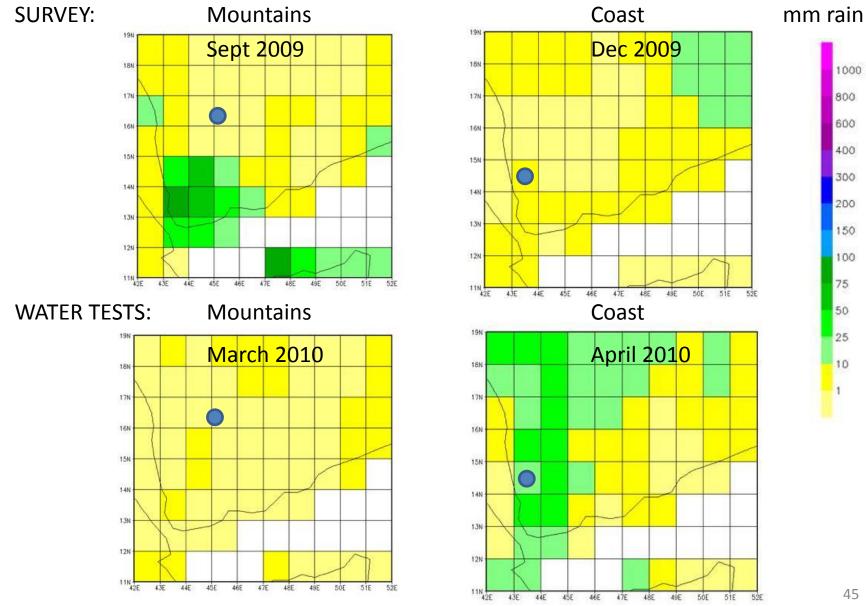
Water pollution varies across space:

Total Coliforms, Amran (mountains)

Illnesses 30 days prior to survey

		Diarrhea	Abdominal Pain / Vomiting	Fever	People in subsample
		Percent	Percent	Percent	N
Mountains	Water	4.47	4.24	4.87	1744
	Water & Sanit.	5.38	4.66	6.14	2361
	Control Area	3.32	3.72	4.70	2981
	Control Town	2.90	3.07	2.38	2479
Coast	Water	4.77	4.54	6.52	859
	Water & Sanit.	3.29	2.70	3.52	4746
	Control Town	2.71	2.61	3.87	3100
Total		3.60	2.98	3.76	18270

Water purification at household level


		Boil	Water filter	Other	No Treatment	HHs
		%	%	%	%	N
Mountains	Water	4.9	18.0	2.0	74.3	490
	Control Area	2.4	7.2	1.9	87.2	374
_	Control Town	2.3	4.7	0.7	91.6	299
Coast	Water	1.9	0.4	0.7	97.0	841
	Control Town	0.9	0.5	1.2	97.5	434
Total		2.5	5.4	1.3	90.4	2476

Water pollution: E.coli and Total Dissolved Solids

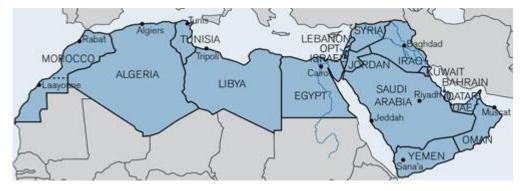
			House	eholds	Sample Size
		Drinking Cup Polluted Water		HH	
		Source	E.coli	TDS	
			percent	percent	N
Mountains	Water	Pipe	20.0	10.0	70
	Water & Sanit	I -	38.4	5.5	73
	Control Area	Truck	20.3	12.5	64
	Control Town	Truck	40.0	0.0	65
Coast	Water	Pipe	46.4	75.4	69
	Water & Sanit	1	36.6	84.5	71
	Control Town	Truck	61.4	29.5	88
Total			38.6	31.4	500

Robustness:

Rainfall (GPCC Data 2011)

Background Middle East & North Africa

MENA21 countriesPopulation432 mio (2007)Urban65%

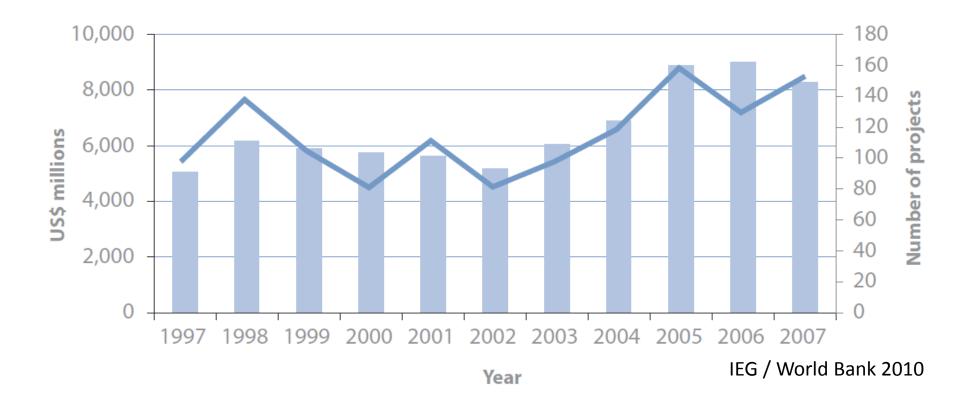

Urb. population increase: 60% till 2020

General problems across the region

- unclear land rights, incl. access to wells
- over-exploitation of groundwater
- unlicensed well drilling
- growing urban populations

Drinking water per person Liters per day

WHO	20-40 L
MENA	38.6 L
Yemen	4.4 L
Germany	193 L


(surface property vs. land property)

(drinking, cooking, bathing) WHO 2005

Background	Yemen			
Population	23.6 Mio	World Bank 2009		
• Size	530.000 km²	1.5x Germany		
GNI per cap	2,330 USD PPP	2nd lowest in Arab world		
• HDI	rank 133 (of 169)	lowest in Arab world		
Child Mortali	ty 66/1000	under 5		
main cause	diarrheal diseases			
Adult illiterad	y 29.6% male	UNDP 2004		
	61.6% female			
Annual Rainfall				
	Mountains	250 mm		
	Coast	39 mm		
	Göttingen	649 mm		
Total Renewable Freshwater Supply				
	Available	4.10 km ³		
	Withdrawal	6.63 km³		
	Overuse	61.2 %		

Motivation

World Bank lending in the water sector, 1997-2007:

Literature Why only limited health impacts?

Jalan and Ravallion (2003) Journal of Econometrics

- Treatment: -Piped water to each household in village
- Analysis: -Propensity score matching
- Results: Diarrhea significantly lower among treated children (<5yrs)

- BUT conditional on mother's education

Semenza et al (1998) American Journal of Tropical Medicine and Hygiene

- Epidemiological analysis of pollution sources in urban Uzbekistan
- Randomized Control Trial: chlorination of drinking water at home (N=240)
- Results: Home treatment more important than piped water
 - No detectable levels of chlorine residues in 30% of pipes
 - Clear sign of pipe pollution
 - Chlorination and water pressure matters

Literature Meta Studies

Gundry et al (2004) Journal of Water and Health

- Focus: health outcomes related to household water quality
- Literature review: 16 studies on diarrhea and cholera
- Results: improved drinking water reduces cholera
 no clear impact on diarrhea

Wright et al (2004) Tropical Medicine and International Health

- Focus: microbiological contamination between source and point-of-use
- Literature review: 57 studies on pollution at source and point-of-use
- Results: negligible effects of source improvements on drinking quality
 storage and treatment at household level key to pollution

6 March 2012 Last updated at 11:28 GMT

495 < Share 📑 💟 🗠 🖨

UN meets Millennium Development Goal on drinking water

By David Loyn

Development correspondent, BBC News

theguardian

Millennium development goal on safe drinking water reaches target early

UN tempers news that 89% of global population can access safe drinking water with warning that sanitation MDG is a long way off

🍑 Tweet	181		
f Share	<419		
🤠 reddit this			

Liz Ford guardian.co.uk, Tuesday 6 March 2012 09.51 GMT Article history

